# MicroSystems Lab/CCD Technology



# S. Holland LBNL January 26<sup>th</sup>, 2001

#### **Outline**

- MicroSystems Laboratory
- CCD Technology
- Point Spread Function
- Background radiation issues

### MicroSystems Lab/CCD Technology



- The MicroSystems Lab was conceived by the LBNL Physics Division to support the detector R&D effort for the Superconducting SuperCollider
- The MSL is a Class 10 clean room dedicated to high-purity silicon fabrication
- Includes full CCD fabrication capability except ion implantation (3 commercial vendors in the Bay Area)
- Equipment includes:
  - 1X lithography for large area CCD development (Intel donation)
  - 5X wafer stepper lithography (Hewlett Packard donation)
  - Polysilicon and silicon nitride dry etching (partially funded by Keck Telescope Science Steering Committee)
  - Oxidation and annealing furnaces
  - Polysilicon, silicon nitride, and silicon dioxide thin film deposition furnaces
  - Aluminum, silicon dioxide and indium tin oxide deposition (sputtering)
- Successful fabrication of 200 x 200, 2048 x 2048, and 2048 x 4096 (15μm)<sup>2</sup> CCD's

# LBNL MicroSystems Lab



Optical/scanning-electron-microscope photographs taken after poly1 etching





### **CCD Technology**



- Conventional CCD fabrication technology with high-resistivity silicon
- Standard processing through the first 8 (of 10) masking steps
- After mask 8 wafers sent out for backgrinding and backside polishing
  - Standard process for thin die applications
- Deposition of thin backside ohmic contact (in-situ doped polysilicon)
  - Back-illuminated photodiode technology licensed to Digirad, Inc for nuclear medical imaging application
- Completion of remaining processing (contact/metal) with 300 μm thick wafer, requiring lithography focus adjustment (500-600 μm standard)
- Deposition of antireflection coatings on wafer backside

Successful fabrication of front-illuminated control wafers at commercial vendor

LBNL completion of wafers processed through mask 8 by commercial vendor in progress

# **CCD Technology**



CCD fabricated at commercial foundry through mask 8, contact etching and remaining processing performed at LBNL (in progress)



# **CCD Technology**



#### Substrate bias voltage depletes substrate ~ independently of clock voltages



### **Point Spread Function Issues**



Low-resistivity CCD (typically 20 mm thick): PSF dominated by carrier diffusion in field-free regions. s = Thickness of field-free region.



Calculated CCD potential versus depth

### **Point Spread Function Issues**



- Fully depleted CCD: PSF determined by hole transit time in electric field
- For carriers with the same arrival time at the CCD potential wells, the distribution is Gaussian

#### **Constant field approximation**

$$oldsymbol{s}=\sqrt{2D_{p}t_{tr}}$$

$$t_{tr} = \frac{z_{sub}}{v} = \frac{z_{sub}}{\boldsymbol{m}_{p}E} = \frac{z_{sub}^{2}}{\boldsymbol{m}_{p}(V_{sub} - V_{J})}$$

$$D_p / \mathbf{m}_p = kT / q$$

$$D_p / \mathbf{m}_p = kT / q \qquad \mathbf{s} = z_{sub} \sqrt{\frac{kT}{q} \frac{2}{(V_{sub} - V_J)}}$$

 $Z_{sub}$  ~ Thickness of CCD

kT/q Thermal voltage

 $V_{sub} - V_I$  Voltage across drift region

## **PSF** Measurements at Lick Observatory



# Hamilton Coude Echelle Spectrograph FWHM from Calibration Lamp Spectra

All CCDs have 15 µm pixels

| Device                 | FWHM (pixels) | Notes          |
|------------------------|---------------|----------------|
| Loral Frontside        | 1.25          |                |
| Loral Thinned/Backside | 1.90          |                |
| LBNL Backside (300 μm) | 1.95          | 40V subr. bias |
| LBNL Backside (200 μm) | 1.60          | 40V subr. bias |

$$\frac{\sqrt{1.60^2 - 1.25^2}}{\sqrt{1.95^2 - 1.25^2}} \approx 0.67$$

$$s \approx 6.4/9.6 mn (200/300 mn)_{V_{sub}=40V}$$

Consistent with pinhole mask/cosmic ray experiments

# Cosmic Ray/Background Radiation Issues



- Cosmic ray tracks are long
- CCD has non-negligible g efficiency
- Multiply-scattered Compton electrons yield long tracks
- Low background materials essential



## Cosmic Ray/Background Radiation Issues



# LBNL Low Background Facilities

The Low Background Facilities are laboratories especially designed to shield out cosmic and terrestrial radiation to allow the ultra-sensitive analysis of radioactivity in samples normally considered non-radioactive. Examples of this are building materials and electronic components for neutrino and dark matter detectors, environmental samples, and cosmic ray activated samples.

- LBF Overview
- LBF User Info
- LBF Staff
- LBF Publications
- Neutron Activation
- Field Measurements
- Annual Reports
- NSD Home Page
- LBNL Home Page
- Disclaimer
  Site Webmaster:

Dick McDonald: rjmcdonald@lbl.gov



Version 2/17/99

# **Materials Testing at LBNL LBF**





Real Time: 237758.72 s. Live Time: 237600.39 s. Channels: 16384

Acquired: 4/7/00 3:39:58 PM

File: C:\D-Disk\My Documents\Steve Holland\Radiological Contamination\LBF Data\13705.chn

Detector: #4 No detector description was entered

### **Key R&D Issues / Work in Progress**



- Adequate PSF for SNAP pixel size
  - High voltage operation and/or thinner wafers
- Commercialization
  - 150 mm wafer development at commercial foundry
  - Photodiode run to map dark current, first experience with 150 mm wafers
  - 2 CCD runs, with and without back illumination
  - Backup is LBNL MicroSystems Lab
    - 4 SNAP CCD's per 100 mm wafer vs 9 for 150 mm wafer
- Ground-based astronomy efforts
  - 2048 x 2048 for Hamilton Spectrograph at Lick Observatory (engineering runs)
  - 800 x 1980 for KPNO RC Spectrograph (2001B semester in shared-risk mode)
  - 2048 x 4096 development with Lick CCD Testing Lab for Keck ESI Spectrograph
- Proton irradiations at LBNL 88" Cyclotron
- Continued upgrading of LBNL CCD Testing Facility